
Long pipe

I

I Any piece of pipe longer than 30 feet shall be clearly
labelled “long pipe” on each end

I Any piece of pipe longer than 100 feet shall also be
labelled “long pipe” in the middle, so the plumber doesn’t
have to walk all the way to the end to find out whether it is
long pipe or not.

I WARNING: Long Lecture



How do we use statistics

I We use statistics to confirm effects, estimate parameters,
and predict outcomes

I It usually rains when I’m in Cape Town, but mostly on
Sunday

I Confirmation: In Cape Town, it rains more on Sundays than
other days

I Estimation: In Cape Town, the odds of rain on Sunday are
1.6–2.2 times higher than on other days

I Prediction: I am confident that it will rain at least one
Sunday while I am here



Raining in Cape Town

I How we interpret data
like this necessarily
depends on
assumptions:

I Is it likely our
observations
occured by chance?

I Is it likely they didn’t?



Vitamin A

I We measure the average heights of children raised with
and without vitamin A supplements

I Estimate: how much taller (or shorter) are the treated
children on average?

I Confirmation: are we sure that the supplements are helping
(or hurting)?

I Range of estimates: how much do we think the supplement
is helping?
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Estimation

I We use P values to say how sure we are that we have
seen some effect

I We use confidence intervals to say what we think is going
on (with a certain level of confidence)

I P values are over-rated
I Never use a P value as evidence that an effect is small, or

that two quantities are similar.



Vitamin A example

I We want to know if vitamin A supplements improve the
health of village children

I Is height is a good measure of general health?
I How will we know height differences are due to our

treatment?
I We want the two groups to start from the same point –

independent randomization of each individual
I We may measure changes in height
I Or control for other factors



What do we hope to learn?

I Is vitamin A good for these children?
I How sure are we?
I How good do we think it is?
I How sure are we about that?



P values

I What does it mean if I find a "significant P value" for some
effect in this experiment?

I The difference is unlikely to be due to chance
I So what! I already know vitamin A has strong effects on

metabolism
I If I’m certain that the true answer isn’t exactly zero, why do

I want the P value anyway?



Confidence intervals
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I What do these results
mean?

I Which are significant?



Confidence intervals and P values
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0.22 0.06 0.01

I A high P value means
we can’t see the sign of
the effect clearly

I A low P value means
we can



The meaning of P values

I More broadly, a P value measures whether we are seeing
something clearly

I It’s usually the sign of some quantity, but doesn’t need to be



Types of Error

I Type I (False positive:) concluding there is an effect when
there isn’t one

I This doesn’t happen in biology. There is always an effect.
I Type II (False negative:) concluding there is no effect when

there really is
I This should never happen, because we should never

conclude there is no effect



Experimental design

I Type I (False positive:) in the hypothetical case that the
effect is exactly zero, what is the probability of falsely
finding an effect

I Should be less than or equal to my significance value
I Type II (False negative:) what is the probability of failing to

find an effect that is there?
I Useful, but can only be asked for a specific hypothetical

effect size
I This is basically power and validity analysis – you should

do these hypothetical analyses before you collect data, not
after



A new view of error

I Sign error: if I think an
effect is positive, when
it’s really negative (or
vice versa)

I Magnitude error: if I
think an effect is small,
when it’s really large (or
vice versa)

I Confidence intervals
clarify all of this



Low P values

I If I have a low P value I
can see something
clearly

I But it’s usually better to
focus on what I see
than the P value



High P values

I If I have a high P value,
there is something I
don’t see clearly

I It may be because this
effect is small

I High P values should
not be used to advance
your conclusion



What causes high P values?

I Small differences
I Less data
I More noise
I An inappropriate model
I Less model resolution
I A lower P value means that your evidence for difference is

better
I A higher P value means that your evidence for similarity is

better – or worse!



Annualized flu deaths
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I Why is weather not
causing deaths at this
time scale?



... with confidence intervals
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0.018 0.038 0.882
I Never say: A is

significant and B isn’t,
so A > B

I Instead: Construct a
statistic for the
hypothesis A > B

I Sometimes difficult,
but you still have to
do it



Syllogisms

I All men are mortal
I Jacob Zuma is mortal
I Therefore, Jacob Zuma

is a man



Syllogisms

I All men are mortal
I Fanny the elephant is

mortal
I Therefore, Fanny is a

man



Bad logic

I A lot of statistical practice works this way:
I bad logic in service of conclusions that are (usually) correct

I This sort of statistical practice leads in the aggregate to
bad science

I The logic can be fixed:
I Estimate a difference, or an interaction



Small effects

I We can’t build statistical confidence that something is
small by failing to see it clearly

I We must instead see clearly that it is small
I This means we need a standard for what we mean by small



Flu masks



Flu mask example

I People who work in respiratory clinics sometimes have to
wear bulky, uncomfortable, expensive masks

I They would like to switch to simpler masks, if those will do
the job

I How can this be tested statistically? We don’t want the
masks to be "different".

I Use a confidence interval
I Decide how big a level is acceptable, and construct a P

value for the hypothesis that this level is excluded!



Study results
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Non-inferiority trial

0.
95

1.
00

1.
05

1.
10

New mask vs. big mask

O
dd

s 
ra

tio
 o

f i
nf

ec
tio

n

●
●

Pilot Full study

I Is the new mask "good
enough"?

I What’s our standard for
that?



Non-inferiority trial
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0.342 0.025

I We can even attach a P
value by basing it on
the "right" statistic.

I The right statistic is the
thing whose sign we
want to know:

I The difference
between the
observed effect and
the standard we
chose
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Frequentist paradigm

I Make a null model
I Test whether the effect you see could be due to chance

I What is the probability of seeing exactly a 1.52 cm
difference in average heights?

I Test whether the effect you see or a larger effect could be
due to chance

I This probability is the P value



Height measurements
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Scrambled measurements
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Scrambled measurements
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Scrambled measurements
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Scrambled measurements
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The null distribution
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Bayesian paradigm

I Make a complete model
world

I Use conditional
probability to calculate
the probability you want



A powerful framework

I More assumptions =⇒
more power

I With great power
comes great
responsibility



Bayesian inference

I We want to go from a statistical model of how our data are
generated, to a probability model of parameter values

I Requires prior distributions describing the assumed
likelihood of parameters before these observations are
made

I Use Bayes theorem to calculate posterior distribution –
likelihood after taking data into account



Vitamin A study
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I A frequentist can do a
clear analysis right
away

I A Bayesian needs a ton
of assumptions – will try
to make “uninformative”
assumptions



Cape Town weather

I Frequentist: how
unlikely is the
observation, from a
random perspective?

I Bayesian: what’s my
model world? What is
my prior belief about
weather-weekday
interactions.



Example: MMEV

I MMEV is a viral infection that can cause a serious disease
(called MMED)

I MMED patients are unable to control their urge to fit
models to data

I A certain population has a prevalence of 1%
I The rapid MMEV test gives a positive result:

I 100% of the time for people with the virus
I 5% of the time for people without the virus



MMEV questions

I You pick a person from this population at random, and test
them, and the test is positive.

I What is the probability that they have MMEV?
I You learn that your friend has had a positive rapid test for

MMEV
I What do you tell them?
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Your philosophy

I Statistics are not a magic machine that gives you the right
answer

I If you are to be a serious scientist in a noisy world, you
should have your own philosophy of statistics

I Be pragmatic: your goal is to do science, not get caught by
theoretical considerations

I Be honest: it’s harder than it sounds.
I You can always keep analyzing until you find a “significant”

result
I If you do this you will make a lot of mistakes
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