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Model terminology 

¨  Deterministic 
¨  Stochastic 

¨  Continuous time 
¨  Discrete time 

¨  Compartmental models 
¨  Network models 
¨  Individual-based models 
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Differential equations (ODE’s) 

¨  Equations describe the change in state 
variables through time 
➙ deterministic progression from a set of initial 

conditions 

¨  Good for: 
¤ understanding periodicity in long time series 

for large populations 
¤ understanding effects of vaccination and 

birth rates on persistence and periodicity 

Differential equations (ODE’s) 

¨  Continuous treatment of individuals; 
appropriate for: 
¤ average system behavior 
¤ population proportions 
¤ population densities 

¨  Continuous treatment of time 

d N
d t

= bN − d NN 
db
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Differential equations (ODE’s) 

¨  Assumptions 
¤  large (infinite) populations 
¤ well-mixed contacts 
¤ homogenous individuals 
¤ exponential waiting times (memory-less) 

Implications of continuous time 

¨  Continuous treatment of time 

¨  Treatment of time as discrete steps 

ΔN
Δ t

= bN − d NN 
db

d N
d t

= bN − d NN 
db
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Discrete time 

¨  N is the population size or density 
¨  t is time 
¨ Δ denotes “change in” 

ΔN
Δ t

= bN − d N

¨  b is the per capita birth rate 
¨  b*N is the total birth rate 
¨  d is the per capita death rate 
¨  d*N is the total death rate 

ΔN
Δ t

= bN − d N

Discrete time 
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¨  This equation can be multiplied by Δt to 
get: 

¨  What are the units of each side of the new 
equation? 

ΔN
Δ t

= bN − d N

ΔN = bN − d N( )Δ t

Discrete time 

¨  If we define r = b – d (often called the 
“intrinsic population growth rate”), this 
equation can be rewritten as: 

ΔN = bN − d N( )Δ t

ΔN = r NΔ t

Discrete time 
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¨  If we know the state of the population, Nt,  
at some time t, then we can calculate the 
state of the population at time t + Δt as: 

 
¨  In this case: 

¨  So, if r>0, N gets bigger with time; if r<0, N 
gets smaller with time; and if r=0, then  

ΔN = r NΔ t

Nt+Δt = Nt +ΔN

Nt+Δt = Nt + r NΔ t

Nt+Δt = Nt

Example 

¨  Say we have a population with an intrinsic 
population growth rate of r = 24 day-1 

¨  If we start at time t = 0 with N0 = 1 
individual, and our population reproduces 
at this rate every day (Δt = 1),after 1 day 
we would expect to have a population 
size of  

Nt+Δt = Nt + r NΔ t
N1 = N0 + 24∗1∗1
N1 = 25
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Example 

¨  After two days, we would have a 
population size of  

 
¨  Since r>0, the population grows 

exponentially: 

N2 = N1 + r N1Δ t
N2 = 25+ 24∗25∗1
N2 = 625

N2 = 625 ≈ e
6.44

Example 2 

¨  Now, say we have a population with an 
intrinsic population growth rate of r = 24 
day-1 but our population reproduces every 
hour, instead of every day (so Δt = 1/24 
because our unit of time is still days) 

¨  If we start at time t = 0 with N0 = 1 
individual, after 1 hour we would expect to 
have a population size of  

N 1
24
= N0 + 24∗1∗ 124

N 1
24 = 2
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Example 2 

¨  After two hours, we would have a 
population size of  

 
¨  The population still grows exponentially: 

N2
24
= N 1

24
+ r N 1

24
Δ t

N2
24
= 2+ 24∗2∗ 124

N2
24
= 4

N2 ≈ e
17.5

Examples 1 & 2 

Δ t =1
Δ t = 1

24
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Example 3 

dN
dt

= lim
Δt→0

ΔN
Δ t

Example 3 

¨  This is known as an ordinary differential 
equation model 

 

dN
dt

= bN − d N = r N
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Example 3 

¨  Using calculus, we can show that 
 

Nt =N0e
rt

N2 = e
48

¨  As before, the population increases 
exponentially when r > 0 

¨  When r < 0, the population experiences 
exponential decline, and when r = 0, the 
population remains constant 

 

Nt =N0e
rt
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Implications of continuous time 

Δ t =1
Δ t = 1

24

Δ t→ 0

Implications of continuous time 

Δ t =1
Δ t = 1

24

Δ t→ 0
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Implications of continuous time 

Δ t =1
Δ t = 1

24

Δ t→ 0

Differential equations (ODE’s) 

¨  Continuous treatment of individuals 
¨  Continuous treatment of time 
¨  Assumptions 

¤  large (infinite) populations 
¤ well-mixed contacts 
¤ homogenous individuals 
¤ exponential waiting times (memory-less) 
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Large population assumption 
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Differential equations (ODE’s) 

¨  Continuous treatment of individuals 
¨  Continuous treatment of time 
¨  Assumptions 

¤  large (infinite) populations 
¤ well-mixed contacts 
¤ homogenous individuals 
¤ exponential waiting times (memory-less) 

Homogeneity assumption 
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Homogeneity assumption 
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Differential equations (ODE’s) 

¨  Continuous treatment of individuals 
¨  Continuous treatment of time 
¨  Assumptions 

¤  large (infinite) populations 
¤ well-mixed contacts 
¤ homogenous individuals 
¤ exponential waiting times (memory-less) 
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Exponential waiting times 

N 
µ

Exponential survival: 

d N
d t

= −µ N

Exponential waiting times 

N 
µ

Exponential survival: 

Nt =N0e
−µt

d N
d t

= −µ N
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Exponential waiting times 

N 
µ

Exponential survival: Nt

N0

= e−µt

d N
d t

= −µ N

Exponential waiting times 

N 
µ

Exponential survival: Nt

N0

= e−µt

d N
d t

= −µ N
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Exponential waiting times 

Exponential Survival Times 
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Model taxonomy 

CONTINUOUS TIME  

•  Gillespie algorithm 

DISCRETE TIME 

•  Chain binomial type models 
  (eg, Stochastic Reed-Frost models) ST
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CONTINUOUS TIME 

•  Stochastic differential equations 

DISCRETE TIME 

•  Stochastic difference equations 

 

 

DISCRETE TREATMENT OF INDIVIDUALS 
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CONTINUOUS TREATMENT OF INDIVIDUALS 

(averages, proportions, or population densities) 

 
CONTINUOUS TIME  

•  Ordinary differential equations 

•  Partial differential equations 

DISCRETE TIME 

•  Difference equations 

  (eg, Reed-Frost type models) 


