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Model terminology
I
o Deterministic
o Stochastic

o Continuous time
o Discrete time

o Compartmental models
o Network models
o Individual-based models
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Differential equations (ODE’s)

o Equations describe the change in state
variables through time

- deterministic progression from a set of initial
conditions

o Good for:

o understanding periodicity in long time series
for large populations

o understanding effects of vaccination and
birth rates on persistence and periodicity

Differential equations (ODE’s)

o Confinuous freatment of individuals;
appropriate for:

o average system behavior
o population proportions
o population densities

o Confinuous freatment of time
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Differential equations (ODE’s)
4|
o Assumptions

o large (infinite) populations

o well-mixed contacts

o homogenous individuals

o exponential waiting times (memory-less)

Implications of continuous tfime
.

o Confinuous freatment of time

b d dN
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o Treatment of time as discrete steps

b d AN
N T _bN-dN
At

6/2/15



6/2/15

Discrete time
[

Aﬁ=bN—dN

At

o N is the population size or density
o tis time
o A denotes “change in”

Discrete time
[

éﬁ=bN—dN

At

o b is the per capita birth rate

o b*N is the total birth rate

o d is the per capita death rate
o d*N is the total death rate




Discrete time
[

-éz!4=bAﬁ—dﬁJ
At

o This equation can be multiplied by At to
get:

AN =(bN-dN)At

o What are the units of each side of the new
equation?

Discrete time
[

AN =(bN-dN)At

o If we definer=b - d (often called the
“intrinsic population growth rate”), this
equation can be rewritten as:

AN =rNAt
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AN =rNAt

o If we know the state of the population, N;,
at some time t, then we can calculate the
state of the population at time t + At as:

N,

t+At

=N,+AN
o In this case:
N., =N, +rNAt
o So, if >0, N gefts bigger with time; if r<0, N
gets smaller with time; and if r=0, then

Nz+At=Nl

Example
4|

o Say we have a population with an intrinsic
population growth rate of r = 24 day!

o If we start at time t =0 with Ny =1
individual, and our population reproduces
at this rate every day (At = 1),after 1 day
we would expect to have a population
size of

N, =N, +rNAt
N, = N, +24%1x1
N, =25
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Example

o After two days, we would have a

population size of
N,=N,+rN,At

N, =25+24%25%1
N, =625
o Since r>0, the population grows
exponentially:

mmmmmmmmmmmm

Example 2

o Now, say we have a population with an
intrinsic population growth rate of r = 24
day-! but our population reproduces every
hour, instead of every day (so At=1/24
because our unit of time is still days)

o If we start at time t =0 with Ny =1
individual, after 1 hour we would expect to
have a population size of

N%4 =N, +24x*1 %),
N J=2
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Example 2

o After two hours, we would have a

population size of
N%4=N%4+I"N%4Al’

N, =2+242x),
N%4 =4

o The population still grows exponentially:
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Example 3
4|

dN ,. AN
= l1im-—
dt  A=0 At

Example 3
4|

AN _pN-dN=-rN
ar

o This is known as an ordinary differential
equation model
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Example 3

-
o Using calculus, we can show that

N,=N,e"

t
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N,=N,e"

I
o As before, the population increases

exponentially whenr>0

o When r <0, the population experiences
exponential decline, and whenr =0, the
population remains constant

mmmmmmmmmmmm
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Implications of continuous fime
.

— Ar=1

— A=,
— At—0
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Implications of continuous tfime
4|

— Ar=1

— A=,
— At—0

6/2/15

11



6/2/15

Implications of continuous fime
4|

— Ar=1

— Ar=,
— At—0

Differential equations (ODE’s)
I
o Continuous treatment of individuals
o Continuous treatment of time

o Assumptions
o large (infinite) populations
o well-mixed contacts
o homogenous individuals
o exponential waiting times (memory-less)
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Large population assumption

Rate at which an infected individual
produces new infections in a naive
population

X

Proportion of new infections that
become infectious

X

Average duration of infectiousness

Infected

Large population assumption

Ro=1.5

Infected

Time

13



Differential equations (ODE’s)

3|
o Continuous treatment of individuals
o Continuous treatment of time
o Assumptions
o large (infinite) populations
o well-mixed contacts
o homogenous individuals
o exponential waiting times (memory-less)

Homogeneity assumption
3|
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Homogeneity assumption
4|
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Proportion affected

Differential equations (ODE’s)
4|
o Continuous treatment of individuals
o Continuous treatment of time
o Assumptions

o large (infinite) populations

o well-mixed contacts

o homogenous individuals

o exponential waiting times (memory-less)
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Exponential waiting times

i
Exponential survival:

Exponential waiting times

i
Exponential survival:

N N, =N,e™"

16



Exponential waiting times
i
Exponential survival:
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dN
a

Exponential waiting times

i
Exponential survival: N
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hazard of mortality

Exponential waiting times

Exponential survival:

u

Exponential Survival Times
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DETERMINISTIC

STOCHASTIC

Model taxonomy

CONTINUOUS TREATMENT OF INDIVIDUALS DISCRETE TREATMENT OF INDIVIDUALS

(averages, proportions, or population densities)

CONTINUOUS TIME
» Ordinary differential equations
« Partial differential equations
DISCRETE TIME
« Difference equations

(eg, Reed-Frost type models)

CONTINUOUS TIME CONTINUOUS TIME

« Stochastic differential equations * Gillespie algorithm

DISCRETE TIME DISCRETE TIME

« Stochastic difference equations * Chain binomial type models

(eg, Stochastic Reed-Frost models)
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