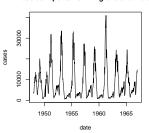
Dynamic modeling

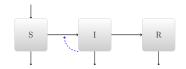
Connects scales

Measles reports from England and Wales



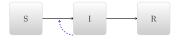
Box models

Divide people into categories:



 $\blacktriangleright \ \, \text{Susceptible} \to \text{Infectious} \to \text{Recovered}$

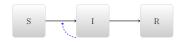
What determines transition rates?



- People get better independently
- People get infected by infectious people

Conceptual modeling

Conceptual modeling

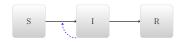


- What is the final result?
- When does disease increase, decrease?

Implementation

- The conceptually simplest way to implement this conceptual model concretely is Ordinary Differential Equations (ODEs)
 - Other options may be more realistic
 - Or simpler in practice
- Requires assumption about recovery and transmission

Recovery



- Infectious people recover at per capita rate \(\gamma \)
 - Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$

Transmission

- Susceptible people get infected by:
 - Going around and contacting people (rate c)
 - Some of these people are infectious (proportion I/N)
 - Some of these contacts are effective (proportion p)
- ▶ Per capita rate of becoming infected is cpI/N. We write $\beta I/N$ ($\beta = cp$)
- Population-level transmission rate is βSI/N

Another perspective on transmission

- Infectious people infect others by:
 - Going around and contacting people (rate c)
 - ▶ Some of these people are susceptible (proportion S/N)
 - Some of these contacts are effective (proportion p)
- ▶ Per capita rate of infecting others is cpS/N. We write $\beta S/N$
- Population-level transmission rate is βSI/N

ODE implementation

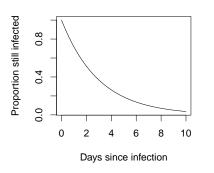
$$\begin{array}{rcl} \frac{dS}{dt} & = & -\beta \frac{SI}{N} \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I \\ \frac{dR}{dt} & = & \gamma I \end{array}$$

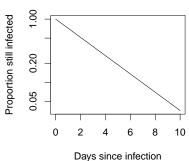
Spreadsheet example

ODE assumptions

- Lots and lots of people
- Perfectly mixed

ODE assumptions





- Waiting times are exponentially distributed
- Rarely realistic

Scripts vs. spreadsheets

```
Susceptibles | Infectious | Remover | Total | People | Pe
```

More about transmission

- \triangleright $\beta = pc$
- Sometimes this decomposition is clear
- ▶ But usually it's not

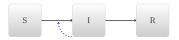
Population sizes

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

Population sizes

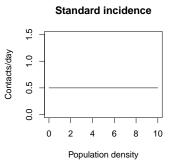


$$\frac{dS}{dt} = -\beta(N) \frac{SI}{N}$$

$$\frac{dI}{dt} = \beta(N) \frac{SI}{N} - \gamma I$$

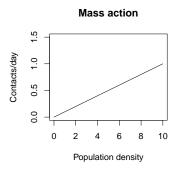
$$\frac{dR}{dt} = \gamma I$$

Standard incidence



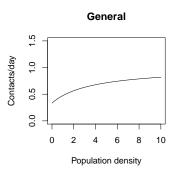
- $\beta(N) = \beta_0$ $T = \frac{\beta_0 SI}{N}$
- Also known as frequency-dependent transmission

Mass action



- $\beta(N) = \beta_1 N$
- $ightharpoonup \mathcal{T} = \beta_1 SI$
- Also known as density-dependent transmission

Other

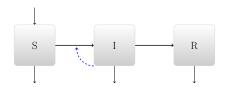


- May not go to zero when N does
- May not go to ∞ when N does

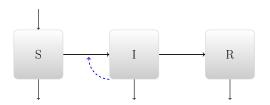
Digression – units

- $\mathcal{T} = \beta SI/N$: [ppl/time]
- $\triangleright \beta : [1/time]$
 - $\beta/\gamma = \beta D : [1]$
 - Standard incidence, β_0 : [1/time]
 - ▶ Mass-action incidence, β_0 : [1/time]

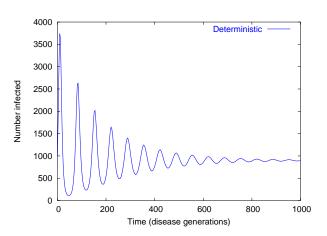
Closing the circle



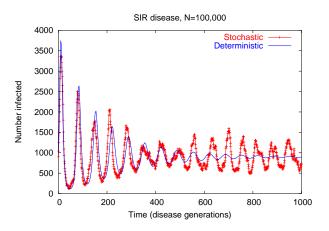
Births and deaths



Tendency to oscillate



With individuality



Summary

- Dynamics are an esssential tool to link scales
- Very simple models can provide useful insights
- More complex models can provide more detail, but also require more assumptions, and more choices

Conclusions from simple models

- Threshold behaviour
- Tendency to oscillate