(Hidden) Assumptions of Simple ODE Models

Juliet Pulliam, PhD
Department of Biology and Emerging Pathogens Institute University of Florida

Model terminology

- Deterministic
\square Stochastic
- Continuous time
- Discrete time
- Compartmental models
\square Network models
- Individual-based models

Differential equations (ODE's)

\square Equations describe the change in state variables through time
\rightarrow deterministic progression from a set of initial conditions

Good for:

- understanding periodicity in long time series for large populations
- understanding effects of vaccination and birth rates on persistence and periodicity

Differential equations (ODE's)

- Continuous treatment of individuals; appropriate for: a average system behavior apopulation proportions apopulation densities
- Continuous treatment of time

$$
\frac{d N}{d t}=b N-d N
$$

Differential equations (ODE's)

\square Assumptions
a large (infinite) populations
a well-mixed contacts
ahomogenous individuals
a exponential waiting times (memory-less)

Implications of continuous time

- Continuous treatment of time

$$
\frac{d N}{d t}=b N-d N
$$

Treatment of time as discrete steps

$$
\frac{\Delta N}{\Delta t}=b N-d N
$$

Discrete time

$$
\frac{\Delta N}{\Delta t}=b N-d N
$$

$\square \mathrm{N}$ is the population size or density
$\square \dagger$ is time

- Δ denotes "change in"

Discrete time

$$
\frac{\Delta N}{\Delta t}=b N-d N
$$

$\square b$ is the per capita birth rate
$\square b^{*} N$ is the total birth rate
$\square d$ is the per capita death rate
$\square d^{*} N$ is the total death rate

Discrete time

$$
\frac{\Delta N}{\Delta t}=b N-d N
$$

\square This equation can be multiplied by Δt to get:

$$
\Delta N=(b N-d N) \Delta t
$$

What are the units of each side of the new equation?

Discrete time

$$
\Delta N=(b N-d N) \Delta t
$$

- If we define $r=b-d$ (often called the "intrinsic population growth rate"), this equation can be rewritten as:

$$
\Delta N=r N \Delta t
$$

$$
\Delta N=r N \Delta t
$$

- If we know the state of the population, N_{t}, at some time t, then we can calculate the state of the population at time $\dagger+\Delta t$ as:
- In this case:

$$
N_{t+\Delta t}=N_{t}+\Delta N
$$

$$
N_{t+\Delta t}=N_{t}+r N \Delta t
$$

\square So, if $r>0, N$ gets bigger with time; if $r<0, N$ gets smaller with time; and if $r=0$, then

$$
N_{t+\Delta t}=N_{t}
$$

Example

- Say we have a population with an intrinsic population growth rate of $r=24$ day $^{-1}$
- If we start at time $\dagger=0$ with $\mathrm{N}_{0}=1$ individual, and our population reproduces at this rate every day $(\Delta t=1)$,after 1 day we would expect to have a population size of

$$
\begin{aligned}
& N_{t+\Delta t}=N_{t}+r N \Delta t \\
& N_{1}=N_{0}+24 * 1 * 1 \\
& N_{1}=25
\end{aligned}
$$

Example

- After two days, we would have a population size of

$$
N_{2}=N_{1}+r N_{1} \Delta t
$$

$$
N_{2}=25+24 * 25 * 1
$$

$$
N_{2}=625
$$

\square Since $r>0$, the population grows exponentially:

Example 2

Now, say we have a population with an intrinsic population growth rate of $r=24$ day ${ }^{-1}$ but our population reproduces every hour, instead of every day (so $\Delta t=1 / 24$ because our unit of time is still days)

- If we start at time $\dagger=0$ with $N_{0}=1$ individual, after 1 hour we would expect to have a population size of

$$
\begin{aligned}
& N_{1 / 24}=N_{0}+24 * 1 * 1 / 24 \\
& N 1 / 24=2
\end{aligned}
$$

Example 2

- After two hours, we would have a population size of

$$
\begin{aligned}
& N_{2 / 24}=N_{1 / 24}+r N_{1 / 24} \Delta t \\
& N_{2 / 24}=2+24 * 2 * 1 / 24 \\
& N_{2 / 24}=4
\end{aligned}
$$

- The population still grows exponentially:

Examples 1 \& 2

- $\Delta t=1$
- $\Delta t=1 / 24$

Example 3

$$
\frac{d N}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta N}{\Delta t}
$$

Example 3

$$
\frac{d N}{d t}=b N-d N=r N
$$

- This is known as an ordinary differential equation model

Example 3

- Using calculus, we can show that

$$
N_{t}=N_{0} e^{r t}
$$

$$
N_{t}=N_{0} e^{r t}
$$

\square As before, the population increases exponentially when $r>0$
\square When $r<0$, the population experiences exponential decline, and when $r=0$, the population remains constant

Days

Implications of continuous time

- $\Delta t=1$
- $\Delta t=1 / 24$
$-\Delta t \rightarrow 0$

Days
Days

Implications of continuous time

- $\Delta t=1$
- $\Delta t=1 / 24$
$-\Delta t \rightarrow 0$

Days

Implications of continuous time

- $\Delta t=1$
- $\Delta t=1 / 24$
$-\Delta t \rightarrow 0$

Days

Differential equations (ODE's)

- Continuous treatment of individuals
\square Continuous treatment of time
- Assumptions
- large (infinite) populations
a well-mixed contacts
ahomogenous individuals
a exponential waiting times (memory-less)

Large population assumption

$$
R_{0}=
$$

Rate at which an infected individual produces new infections in a naïve population

X
1
Proportion of new infections that become infectious

X
Average duration of infectiousness

Large population assumption

Differential equations (ODE's)

- Continuous treatment of individuals
- Continuous treatment of time
- Assumptions
- large (infinite) populations
a well-mixed contacts
a homogenous individuals
a exponential waiting times (memory-less)

Homogeneity assumption

Homogeneity assumption

Differential equations (ODE's)

- Continuous treatment of individuals
\square Continuous treatment of time
- Assumptions
a large (infinite) populations
a well-mixed contacts
ahomogenous individuals
a exponential waiting times (memory-less)

Exponential waiting times

Exponential survival:

$$
\frac{d N}{d t}=-\mu N
$$

Exponential waiting times

Exponential survival:

$$
N_{t}=N_{0} e^{-\mu t}
$$

$$
\frac{d N}{d t}=-\mu N
$$

Exponential waiting times

Exponential survival:

$$
\frac{N_{t}}{N_{0}}=e^{-\mu t}
$$

$$
\frac{d N}{d t}=-\mu N
$$

Exponential waiting times

Exponential survival:

$$
\frac{d N}{d t}=-\mu N
$$

Exponential waiting times

Exponential survival:

Exponential Survival Times

