Stochastic Models – Goals

- Conceptual sense of stochastic dynamics
- Play very mundanely with implementations
- Consider **regimes** of applicability / convenience

Stochastic Models – Outline

- Broad Considerations
- What is a probabilistic process?
- What is a rate?
- Basic Mathematics of *rates* and *flows*
- Different *implementations* of stochasticity

Real World and Model World

Real World

- Lots of unknowns
- high complexity

Model World

- Everything is known
- We control complexity
- Model
 - Mathematical representation of model world **Rules**
- Scenario
 - Mathematical representation of model world **Events**

Why Stochasticity?

- The Real World is stochastic
 - `risks' rather than clear `causes'
- Data would be stochastic even if the world were not
- Model world scenarios may not cluster close to average
 - Population / critical sub-populations not large enough?
 `rare' events?
- Can be simpler than complicated flow models
 - Who contacts whom?
 - Complex variability of biology, environment

Choosing a Model

- Does it take in what we know and put out what we're curious about?
- Does it process the inputs according to our understanding
- Which aspects of `real world' have been left out / included?
- How do we evaluate the `severity' of the `imperfections'?

Implementing a Model

Faithfulness of implementation

- Runtime
- Ease of (initial) deployment
- Ease of variation / maintenance

The Most Important Diagram

The Basic Dynamical Question

What (*tiny*) changes occur in the time step (*dt*)?

Basic Approaches

- Formal Solution
- Discretisation naive flow in time steps
- Simulating *events*.

Can vary the approach:

- for each *individual*, **vs** for *population* as a whole
- As happening (or not) in time steps, *vs* generating times to next event.

dt

dt

- How many people are susceptible at time = t?
- What is S(t) = ?

There are a number of approaches...

The Big Magic Trick

- While the (*tiny*) changes happen in (*dt*),
- The *rates of change* (the rules) stay the same.
- We just express the *rules* (in algebra).
- This leads to (differential) *equations.*
- We *solve* these using mature tools (*calculus*, *R*, *etc*).
- The solutions are *functions* of time, N(t).

'Exact' Solution - Calculus

This one is not that difficult to solve

'Exact' Solution - Calculus

Solving for S(t)
$$S(t) = S_0 e^{-rt}$$

yields:

Analytic / Closed Form

Finite Time Steps

$S(t + \Delta t) = S(t) - rS(t)\Delta t$

Discrete / Numerical

'Simulation'

In each time step, each individual "leaves" S with probability = r

 T_0

A population of 10 susceptible Individuals at T_o

'Simulation'

In each time step Δ , each individual "leaves" S with probability = δ

 T_0

- Generate a random number, U, between o and 1 for each individual
 - If U > δ , individual stays in S
 - If U < δ , individual leaves S
 - Suppose δ (=r Δ) = 0.05

U ~ Uniform on the interval [0, 1]

Random Events in a Time Step

In each time step Δ , each individual "leaves" S with probability = δ

 T_0

Individual _i	U _i
1	0.871
2	0.600
3	0.290
4	0.335
5	0.421
6	0.180
7	0.033
8	0.663
9	0.338
10	0.246

Completing the Time Step

In each time step Δ , each individual "leaves" S with probability = δ

$$T_1$$

 T_0

Abstracting Individuals

Using indicator variables to denote if an individual is still in "S"

$$T_1$$

 T_0

Approach #3

Repeat for the desired number of time steps to determine S(t)

 T_1 T_t Stochastic / Simulation

Discretisation 'Error'

- In each time step Δ , each individual "leaves" S with probability = δ
- Can we really have $\delta = r \Delta$ when Δ is not small?
- 'Discretisation error'
- How about $\delta = 1 \exp(-r \Delta)$
- Taylor expansion: $f(x) = f(o) + f'(o) x^{1} + f''(o) x^{2} / 2! + ...$
- So then exp(x) = 1 x + ...
- And so $r \Delta \approx 1-exp(-r \Delta)$?

Events versus Time Steps

- In this simple model, we can discretise 'correctly'
- This still only evaluates the system at discrete time points
- Why not calculate exact times at which population members leave?

$$S(t) = S_0 e^{-rt} \rightarrow P(t) = e^{-rt}$$

Scheduling Events

Transforming a uniform random number into a 'waiting time'

Scheduling Scheduling

- Should we schedule each exit up front?
- Or should we schedule the next exit
- then the next, ...