Stochastic Models - Goals

- Conceptual sense of stochastic dynamics

Play very mundanely with implementations

- Consider regimes of applicability / convenience

Stochastic Models - Outline

- Broad Considerations
- What is a probabilistic process?
- What is a rate?
- Basic Mathematics of rates and flows
- Different implementations of stochasticity

Real World and Model World

- Real World
- Lots of unknowns
- high complexity
- Model World
- Everything is known
- We control complexity
- Model
- Mathematical representation of model world Rules
- Scenario
- Mathematical representation of model world Events

Why Stochasticity?

- The Real World is stochastic
- 'risks' rather than clear 'causes'
- Data would be stochastic even if the world were not
- Model world scenarios may not cluster close to average
- Population / critical sub-populations not large enough?
- 'rare' events?
- Can be simpler than complicated flow models
- Who contacts whom?
- Complex variability of biology, environment

Choosing a Model

- Does it take in what we know and put out what we're curious about?
- Does it process the inputs according to our understanding
- Which aspects of 'real world' have been left out / included?
- How do we evaluate the 'severity' of the 'imperfections'?

Implementing a Model

- Faithfulness of implementation
- Runtime
- Ease of (initial) deployment
- Ease of variation / maintenance

The Most Important Diagram

The Basic Dynamical Question

What (tiny) changes occur in the time step ($d t$)?

Basic Approaches

- Formal Solution
- Discretisation - naive flow in time steps
- Simulating events.

Can vary the approach:

- for each individual, vs for population as a whole
- As happening (or not) in time steps, vs generating times to next event.

The Most Simple Model(?)

The Most Simple Model(?)

The Most Simple Model(?)

$$
\frac{d S}{d t}=-r S
$$

- How many people are susceptible at time $=t$?
- What is $\mathrm{S}(\mathrm{t})=$?

There are a number of approaches...

The Big Magic Trick

- While the (tiny) changes happen in ($d t$),
- The rates of change (the rules) stay the same.
- We just express the rules (in algebra).
- This leads to (differential) equations.
- We solve these using mature tools (calculus, R, etc).
- The solutions are functions of time, $\mathrm{N}(\mathrm{t})$.

'Exact' Solution - Calculus

$d S$
$\frac{d S}{d t}=-r S(t) \quad$ Differential equation

This one is not that difficult to solve

'Exact' Solution - Calculus

$d S$
Solving for $\mathrm{S}(\mathrm{t})$

$$
S(t)=S_{0} e^{-r t}
$$ yields:

Analytic / Closed Form

Finite Time Steps

$$
S(t+\Delta t)=S(t)-r S(t) \Delta t
$$

Discrete / Numerical

'Simulation'

In each time step, each individual "leaves" S with probability $=r$

A population of 10 susceptible Individuals at $T_{\text {。 }}$

$$
T_{0}
$$

'Simulation'

In each time step Δ, each individual "leaves" S with probability $=\delta$

$$
T_{0}
$$

- Suppose $\delta(=r \Delta)=0.05$

U ~ Uniform on the interval $[0,1]$

Random Events in a Time Step

In each time step Δ, each individual "leaves" S with probability $=\delta$

T_{0}

Individual $_{\mathrm{i}}$	U_{i}
1	0.871
2	0.600
3	0.290
4	0.335
5	0.421
6	0.180
7	0.033
8	0.663
9	0.338
10	0.246

Completing the Time Step

In each time step Δ, each individual "leaves" S with probability $=\delta$

T_{0}

$$
\begin{array}{cccc}
I_{1} & I_{2} & I_{3} & \\
I_{10} & \text { S } & I_{5} & l_{4} \\
I_{9} & I_{8} & & \\
I_{6}
\end{array}
$$

T_{1}

Abstracting Individuals

Using indicator variables to denote if an individual is still in " S "

T_{0}

T_{1}

The Most Simple Model(?)

Approach \#3
Repeat for the desired number of time steps to determine $\mathrm{S}(\mathrm{t})$

$T_{1} \quad T_{t}$

Stochastic/Simulation

Discretisation 'Error'

- In each time step Δ, each individual "leaves" S with probability $=\delta$
- Can we really have $\delta=r \Delta$ when Δ is not small?
- 'Discretisation error'
- How about $\delta=1-\exp (-r \Delta)$
- Taylor expansion: $f(x)=f(o)+f^{\prime}(0) x^{1}+f^{\prime \prime}(0) x^{2} / 2!+\ldots$
- So then $\exp (x)=1-x+\ldots$
- And so $\mathrm{r} \Delta \approx 1-\exp (-r \Delta)$?

Events versus Time Steps

- In this simple model, we can discretise 'correctly'
- This still only evaluates the system at discrete time points
- Why not calculate exact times at which population members leave?

$$
S(t)=S_{0} e^{-r t} \rightarrow \quad P(t)=e^{-r t}
$$

Scheduling Events

Transforming a uniform random number into a 'waiting time'

Scheduling Scheduling

- Should we schedule each exit up front?
- Or should we schedule the next exit
- then the next, ...

